

IoTtalk’s documentation

	Architecture
	Components

	Terminology

	Protocol
	Component Discovery Protocol

	Resource Access Protocol

	Resouce Control Protocol

	API Specification
	Resource Access API

	Resource Control API

	Design of Grahpical User Interface
	Concept

Architecture

Components

Input Unit

The input unit can be a physical device, program, or any thing that can
generate data.

IoTtalk Data Gateway

The IoTtalk Data Gateway will transfer data according to user configured
project.

Output Unit

The output unit can be a physical device, program, or any thing that can
accept data.

Terminology

Protocol

	Component Discovery Protocol
	Preamble

	Component Identity

	Transportation Layer

	Protocol Grammar

	The Protocol Commands
	hello Command

	ping Command

	pong Command

	Security Aspects
	UDP Flood Attack

	Resource Access Protocol
	Preamble

	Resource Identity

	Transportation Layer
	Implementation Suggestion

	Transportation Endpoint
	Registration Endpoint
	Rejection

	Deregistration Endpoint

	Metadata Retrieval Endpoint

	Metadata Modification Endpoint
	Rejection

	Metadata

	Security Aspects

	Resouce Control Protocol
	Preamble

	Transportation Layer

	Implementation Suggestion

	Control Signal
	Connect Signal

	Disconnect Signal

	Resume Signal

	Suspend Signal

	Shutdown Signal

Component Discovery Protocol

In a local area network, we may have one or more input/output devices.
We will introduce how to plug/remove devices here.

	state:	Draft

Preamble

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL”
in this document are to be interpreted as described in RFC 2119 [https://tools.ietf.org/html/rfc2119.html].

Component Identity

We use Universally Unique Identifier (UUID) [https://en.wikipedia.org/wiki/Universally_unique_identifier] to identify a component.

Transportation Layer

The IoTtalk Data Gateway MUST broadcast its identity on IPv4 UDP 1900.
We consider it act as a beacon. A beacon SHALL keep broadcasting in an
constant interval. Taking one to five seconds as broadcasting interval
is RECOMMENDED.

Protocol Grammar

The following ABNF grammar defines Component Discovery Protocol:

cd-protocol = header body CRLF

header = "IT" SP src-UUID SP

body = 1*verb

verb = hello
 / ping
 / pong

hello = "HELO"
ping = "PING" 0*1dest-UUID
pong = "PONG" dest-UUID

src-UUID = UUID
dest-UUID = UUID
UUID = 16OCTET

The sender MUST reveal its UUID in header.

The Protocol Commands

The verb described in section Protocol Grammar are considered as
commands here.

hello Command

This command SHALL be used by a beacon to reveal its UUID at the local
area network. It MUST carry a UUID refered to sender itself.

ping Command

This command is invoked when a component need to check the other known
components still alive or not.

The following message format are valid:

	PING UUID

	PING

The former format carry a UUID refered to a destination component.
If the UUID of the receiver do not match with message UUID, we MAY
drop this message without response. Otherwise, the receiver SHOULD invoke a
pong Command.

The later format do not make anything follow it. Any receiver SHOULD invoke
a pong Command to original sender. In order to make components be
discovered actively, this format is RECOMMENDED to send via broadcasting.
Or in case of discovering all component on same endpoint, same ip,
for example, this format is also RECOMMENDED.

pong Command

This command is invoked in order to reponse the ping Command.

The following message format is valid:

	PONG UUID

This message MUST carry a UUID referd to the source of
ping Command. The receiver MAY drop this message if the carried
UUID do not match with receiver itself.

Security Aspects

UDP Flood Attack

Due to this protocol use UDP as transportation layer. This Attack is a common
issue. Attacker can send huge amount of udp packages with ping command
to make every devices in the LAN busy.

We RECOMMENDED each device maintain a rate limitation for the ping command.
Note again that the receiver of ping command SHOULD invoke response,
but not MUST. Devices can drop udp packages if necessary.

Resource Access Protocol

In a LAN, our device and IoTtalk Data Gateway can known each other via
Component Discovery Protocol. The device application which connects to IoTtalk
always comes and go. We will consider them as kind of resource.
They provide device feature (s) sometimes available and sometimes not.

In order to keep those resources well-managed, this specification will
regulate the following process:

	Resource registration (creation)

	Resource deregistration (deletion)

	Resource metadata modification

	Resource metadata retrieval

	state:	Draft

Preamble

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL”
in this document are to be interpreted as described in RFC 2119 [https://tools.ietf.org/html/rfc2119.html].

Resource Identity

The basic unit of a resource is a device application.
We will use UUID [https://en.wikipedia.org/wiki/Universally_unique_identifier] introduced in Component Discovery Protocol as resource identity.

The different process on same physical device MUST have different UUID [https://en.wikipedia.org/wiki/Universally_unique_identifier].
Because the feature on they may diverge.

Transportation Layer

The message delivered via the transportation layer MUST be constructed
with two part:

	Header part

	Data part

The header part MUST indicate various protocol related metadata, including:

	The kind of process mentioned above.

	The URI endpoint for operating.

The data part is OPTIONAL and it indicate generic data container,
including but can more than:

	The arguments for the process.

	Optional data field for the URI endpoint.

Implementation Suggestion

The RECOMMENDED transportation layer implementation is HTTP.
The HTTP support is widespread, the implementation on devices will become
easier.

In header part, the process can be mapped to the HTTP Verb like GET,
POST, or DELETE. The HTTP URL is also easy to design.
In data part, the JSON/XML content is suitable for deliver complex
data structure.

Transportation Endpoint

The REST-like [https://en.wikipedia.org/wiki/Representational_state_transfer] endpoint design on this protocol is RECOMMENDED.

Each endpoint has a valid set of verbs.
The univeral set verbs is
\(\{ \text{GET}, \text{POST}, \text{PUT}, \text{DELETE} \}\)
which is inspired by HTTP verbs.

Registration Endpoint

This endpoint indicate the creation of a resource.

PUT /<id>

body
<metadata>

Where <id> is the UUID of a resource
mentioned in Resource Identity.

Where <metadata> section is OPTIONAL.
The device can register first, then the metadata
can be added later.

Rejection

We SHOULD reject the registration request if the metadata
is not recognized.

Deregistration Endpoint

This endpoint indicate the deletion of a resource.

DELETE /<id>

Where <id> is the UUID of a resource
mentioned in Resource Identity.

Metadata Retrieval Endpoint

This endpoint indicates the reading of resource
metadata.

GET /<id>/<field locator>

Where <id> is the UUID of a resource
mentioned in Resource Identity.

Where <field locator> is OPTIONAL.
It indicates the selector of the data field,
its format is implementation dependent.

Metadata Modification Endpoint

This endpoint indicates the updating of resource
metadata.

POST /<id>/<field locator>

<metadata>

Where <id> is the UUID of a resource
mentioned in Resource Identity.

Where <field locator> is OPTIONAL.
It indicates the selector of the data field,
its format is implementation dependent.

Rejection

We SHOULD reject the registration request if the metadata
is not recognized.

Metadata

	accept_protos:	List of supported protocols. This field is OPTIONAL.

	idf_list:	idf stands for Input Device Feature.
This field is OPTIONAL.
It’s a list of pair (feature, units).

	Feature:	It has naming convension: ([a-z][_a-z0-9]*)+.

	Units:	It is a list of string or null value. We MUST infer the
dimension of feature from shape of unit.

	odf_list:	odf stands for Output Device Feature.
This field is OPTIONAL.
It’s a list of pair (feature, units).

	Feature:	It has naming convension: ([a-z][_a-z0-9]*)+.

	Units:	It is a list of string or null value. We MUST infer the
dimension of feature from shape of unit.

	name:	Arbitrary string, it can be consider as comment.

	owner:	Arbitrary string. This field is OPTIONAL.

	profile:	A JSON object for storing arbitrary data. This field is OPTIONAL.

Security Aspects

Resouce Control Protocol

The main purpose of Resource Access Protocol is for handling the metadata of resource.
We also need some control signals for changing the state of resource. This
signal was usually sent from the IoTtalk server. The state we concerned will
be:

	Resource data channel connection state

	Resource data transfer state

	Resource unpluging

	state:	WIP

Preamble

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL”
in this document are to be interpreted as described in RFC 2119 [https://tools.ietf.org/html/rfc2119.html].

Transportation Layer

The transportation layer MUST be bidirectional.
The message can be fired by both server and client side. The passive server
model, for example HTTP, is unqualified.

Implementation Suggestion

We RECOMMEND the Message Queuing Telemetry Transport (MQTT) or any kind of
message queue protocol can achieve the bidirectional communication.

Control Signal

A single control signal on the transportation wire MUST be identity as a
distinct, minimal unit. It has following structure:

	Signal type

	Signal payload: this field is OPTIONAL. It depends on the signal type.

The type reveals the main behavior of the signal will achieve. And the payload
is for the required parameters about the signal.

The available types:

	Connect signal

	Disconnect signal

	Resume signal

	Suspend signal

	Shutdown signal

Connect Signal

This signal makes a resource setup its feature data channel with the proper
parameters. The parameters of data channel MUST be revealed in the signal
payload.

Disconnect Signal

This signal makes a resource reset its specific feature data channel connection
and feature data transfer state. In other world, the resource will disconnect
from data channel and disable the feature. The specific feature MUST be
revealed in the signal payload.

Resume Signal

This signal is sent from IoTtalk that requests a resource feature start to do
data exchange on the wire. The specific feature MUST be revealed in the signal
payload.

Suspend Signal

This signal aims at stop the data transfer of specific resource feature
on the wire. The specific feature MUST be revealed in the signal payload.

Shutdown Signal

This signal makes the resource fully shutdown. It will stop all data transfer,
disconnect all from data channel, unregister itself, then maybe do some
internal cleanup.

API Specification

	Resource Access API
	Resource Access HTTP API
	Endpoints
	/<id>
	GET /<id>

	PUT /<id>

	DELETE /<id>

	Resource Control API
	Resource Control MQTT API
	Signals
	Connect Signal

	Disconnect Signal

	Resume Signal

	Suspend Signal

Resource Access API

	Resource Access HTTP API
	Endpoints
	/<id>
	GET /<id>

	PUT /<id>

	DELETE /<id>

Resource Access HTTP API

This specification will introduce HTTP API via REST-like design for
Resource Access Protocol.

Endpoints

/<id>

GET /<id>

Retrieving the metadata of <id>.

	Request Headers:

	
	
	Accept [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.1]

	
	application/json; charset=utf-8

	Response Headers:

	
	
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17]

	
	application/json; charset=utf-8

	Response JSON Object:

	
	id (string): The requested UUID.

	state (string): The state of the resource, online or offline.

	... and other available metadata field.

	Status Codes:

	
	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1]

	
	UUID exists

	
	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5]

	
	The requested UUID unknown

Request:

GET /219e0050-10e0-48dd-9b99-e196acfb30c8 HTTP/1.1
Accept: application/json

Response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "id": "219e0050-10e0-48dd-9b99-e196acfb30c8",
 "state": "ok",
 "name": "BetaCat",
 "idf_list": [["meow", ["dB"]]],
 "accept_protos": ["MQTT", "WebSocket"],
 "rev": "cc35867e-1f74-47d3-88c9-7dcc374a5919",
 "profile": {
 "model": "AI"
 }
}

PUT /<id>

	Request Headers:

	
	
	Accept [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.1]

	
	application/json; charset=utf-8

	
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17]

	
	application/json; charset=utf-8

	Request JSON Object:

	
	name (string, optional): The name of the device application

	idf_list (array, optional): The Input Device Feature list of the device application

	odf_list (array, optional): The Output Device Feature list of the device application

	accept_protos (array): The accepted protocols list of the device application

	profile (json, optional): The data for device application details.

	Response Headers:

	
	
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17]

	
	application/json; charset=utf-8

	Response JSON Object:

	
	id (string): The requested UUID.

	state (string): The state of the resource, ok or error.

	reason (string, optional): The error message.

	rev (string): the token required by deregistration.
It stands for revision.

	url (json)

	ctrl_chans (array):We use two mqtt topics here, in order to achieve
bidirectional communication. The i topic denote the uplink,
client can send control channel request via this link.
Also, the o topic denote the downlink, server will send control
command via this channel.

	Status Codes:

	
	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1]

	
	UUID registration accepted.

	
	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1]

	
	Wrong Content-Type.

	
	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4]

	
	Any content of metadata is not recognized.

Request:

PUT /219e0050-10e0-48dd-9b99-e196acfb30c8 HTTP/1.1
Accept: application/json

{
 "name": "BetaCat",
 "idf_list": [["meow", ["dB"]]],
 "accept_protos": ["MQTT", "WebSocket"],
 "profile": {
 "model": "AI"
 }
}

Response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "id": "219e0050-10e0-48dd-9b99-e196acfb30c8",
 "rev": "41997b1e-2850-43b5-b4b5-309d05307bf7",
 "state": "ok",
 "url": {
 "scheme": "mqtt",
 "host": "example.org",
 "port": 1883
 },
 "ctrl_chans": [
 "219e0050-10e0-48dd-9b99-e196acfb30c8/ctrl/i",
 "219e0050-10e0-48dd-9b99-e196acfb30c8/ctrl/o"
]
}

Error Response:

HTTP/1.1 403 Forbidden
Content-Type: application/json

{
 "id": "219e0050-10e0-48dd-9b99-e196acfb30c8",
 "state": "error",
 "reason": "feature not supported"
}

DELETE /<id>

	Request Headers:

	
	
	Accept [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.1]

	
	application/json; charset=utf-8

	
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17]

	
	application/json; charset=utf-8

	Request JSON Object:

	
	rev (string): the token required by deregistration. It stands for revision.

	Response Headers:

	
	
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17]

	
	application/json; charset=utf-8

	Response JSON Object:

	
	id (string): The requested UUID.

	state (string): The state of the resource, ok or error.

	reason (string, optional): The error message.

	Status Codes:

	
	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1]

	
	UUID successfully unregistered.

	
	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1]

	
	Wrong Content-Type or revision out-of-date.

	
	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5]

	
	UUID already unregistered or not found.

Request:

DELETE /219e0050-10e0-48dd-9b99-e196acfb30c8 HTTP/1.1
Accept: application/json
Content-Type: application/json

{
 "rev": "41997b1e-2850-43b5-b4b5-309d05307bf7"
}

Response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "id": "219e0050-10e0-48dd-9b99-e196acfb30c8",
 "state": "ok"
}

Error Response:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
 "id": "219e0050-10e0-48dd-9b99-e196acfb30c8",
 "state": "error",
 "reason": "id not found"
}

Resource Control API

	Resource Control MQTT API
	Signals
	Connect Signal

	Disconnect Signal

	Resume Signal

	Suspend Signal

Resource Control MQTT API

This specification will introduce MQTT API for Resouce Control Protocol

A control message has following basic skeleton:

{
 'msg_id': '...',
 'idf|odf': 'feature_name',
 'command': 'CMD',
 'topic': '...',
}

And the expected response:

{
 'msg_id': '...',
 'state': 'ok'
}

Most of the control message is device feature level.

Signals

Connect Signal

Example:

{
 'msg_id': '99dd9b65-f7cf-4219-a4b2-60bc16e79670',
 'idf': 'meow',
 'command': 'CONNECT',
 'topic': 'iottalk/esm/5289c32a-bcb3-434d-80b6-de3a22dfc746/i'
}

Response:

{
 'msg_id': '99dd9b65-f7cf-4219-a4b2-60bc16e79670',
 'state': 'ok'
}

Disconnect Signal

Example:

{
 'msg_id': 'fd8d118c-11a0-4dc5-b8fe-e53a41149b09',
 'idf': 'meow',
 'command': 'DISCONNECT',
 'topic': 'iottalk/esm/5289c32a-bcb3-434d-80b6-de3a22dfc746/i'
}

Response:

{
 'msg_id': 'fd8d118c-11a0-4dc5-b8fe-e53a41149b09',
 'state': 'ok'
}

Resume Signal

Example:

{
 'msg_id': '9ea799c9-707b-4107-9903-686aa393e96d',
 'idf': 'meow',
 'command': 'RESUME',
}

Response:

{
 'msg_id': '9ea799c9-707b-4107-9903-686aa393e96d',
 'state': 'ok'
}

Suspend Signal

Example:

{
 'msg_id': '3760aecf-e009-4c14-9a74-7c1800611763',
 'idf': 'meow',
 'command': 'SUSPEND',
}

Response:

{
 'msg_id': '3760aecf-e009-4c14-9a74-7c1800611763',
 'state': 'ok'
}

Design of Grahpical User Interface

Concept

Model

Model denote a set of features.
It has naming convension: ([A-Z][a-z0-9]*)+.

The basic model is the whole set of features.
If we add a device with the basic model, we will be asked to select which
features are desired.

If we want to make an alias of a set of features,
we can create a custom model.

Index

 R

R

 	
 	
 RFC

 	RFC 2119, [1], [2]

IoTtalk Doc

[image: Documentation Status]
 [http://iottalk-spec.readthedocs.org/en/latest/?badge=latest]

 _static/minus.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		IoTtalk's documentation

 		Architecture

 		Components

 		Input Unit

 		IoTtalk Data Gateway

 		Output Unit

 		Terminology

 		Protocol

 		Component Discovery Protocol

 		Preamble

 		Component Identity

 		Transportation Layer

 		Protocol Grammar

 		The Protocol Commands

 		Security Aspects

 		Resource Access Protocol

 		Preamble

 		Resource Identity

 		Transportation Layer

 		Transportation Endpoint

 		Metadata

 		Security Aspects

 		Resouce Control Protocol

 		Preamble

 		Transportation Layer

 		Implementation Suggestion

 		Control Signal

 		API Specification

 		Resource Access API

 		Resource Access HTTP API

 		Resource Control API

 		Resource Control MQTT API

 		Design of Grahpical User Interface

 		Concept

 		Model

_static/comment.png

_static/down.png

